278 research outputs found

    The Gauged (2,1) Heterotic Sigma-Model

    Get PDF
    The geometry of (2,1) supersymmetric sigma-models with isometry symmetries is discussed. The gauging of such symmetries in superspace is then studied. We find that the coupling to the (2,1) Yang-Mills supermultiplet can be achieved provided certain geometric conditions are satisfied. We construct the general gauged action, using an auxiliary vector to generate the full non-polynomial structure.Comment: LaTeX, 25 pages, no figures; version to appear in Nuclear Physics

    Einstein Supergravity and New Twistor String Theories

    Get PDF
    A family of new twistor string theories is constructed and shown to be free from world-sheet anomalies. The spectra in space-time are calculated and shown to give Einstein supergravities with second order field equations instead of the higher derivative conformal supergravities that arose from earlier twistor strings. The theories include one with the spectrum of N=8 supergravity, another with the spectrum of N=4 supergravity coupled to N=4 super-Yang-Mills, and a family with N≄0N\ge 0 supersymmetries with the spectra of self-dual supergravity coupled to self-dual super-Yang-Mills. The non-supersymmetric string with N=0 gives self-dual gravity coupled to self-dual Yang-Mills and a scalar. A three-graviton amplitude is calculated for the N=8 and N=4 theories and shown to give a result consistent with the cubic interaction of Einstein supergravity.Comment: LaTeX, 69 pages, no figures; v2: minor corrections made, footnotes and references adde

    Sigma models with non-commuting complex structures and extended supersymmetry

    Get PDF
    We discuss additional supersymmetries for N = (2, 2) supersymmetric non-linear sigma models described by left and right semichiral superfields.Comment: 11 pages. Talk presented by U.L. at "30th Winter School on Geometry and Physics" Srni, Czech Republic January 2010

    BPS states of D=4 N=1 supersymmetry

    Get PDF
    We find the combinations of momentum and domain-wall charges corresponding to BPS states preserving 1/4, 1/2 or 3/4 of D=4 N=1 supersymmetry, and we show how the supersymmetry algebra implies their stability. These states form the boundary of the convex cone associated with the Jordan algebra of 4×44\times 4 real symmetric matrices, and we explore some implications of the associated geometry. For the Wess-Zumino model we derive the conditions for preservation of 1/4 supersymmetry when one of two parallel domain-walls is rotated and in addition show that this model does not admit any classical configurations with 3/4 supersymmetry. Our analysis also provides information about BPS states of N=1 D=4 anti-de Sitter supersymmetry.Comment: Latex, 27 pages. Various corrections and improvements including an expanded discussion on BPS states in ad

    Black Holes and U-Duality

    Get PDF
    We find the general charged rotating black hole solutions of the maximal supergravities in dimensions 4≀D≀94\le D\le 9 arising from toroidally compactified Type II string or M-theories. In each dimension, these are obtained by acting on a generating solution with classical duality symmetries. In D=4, D=5 and 6≀D≀96\le D \le 9 the generating solution is specified by the ADM mass, [D−1/2][{D-1}/2]-angular momentum components and five, three and two charges, respectively. We discuss the BPS-saturated (static) black holes and derive the U-duality invariant form of the area of the horizon. We also comment on the U-duality invariant form of the BPS mass formulae.Comment: Minor corrections. Version to appear in Nuclear Physics

    Flux Compactifications of M-Theory on Twisted Tori

    Full text link
    We find the bosonic sector of the gauged supergravities that are obtained from 11-dimensional supergravity by Scherk-Schwarz dimensional reduction with flux to any dimension D. We show that, if certain obstructions are absent, the Scherk-Schwarz ansatz for a finite set of D-dimensional fields can be extended to a full compactification of M-theory, including an infinite tower of Kaluza-Klein fields. The internal space is obtained from a group manifold (which may be non-compact) by a discrete identification. We discuss the symmetry algebra and the symmetry breaking patterns and illustrate these with particular examples. We discuss the action of U-duality on these theories in terms of symmetries of the D-dimensional supergravity, and argue that in general it will take geometric flux compactifications to M-theory on non-geometric backgrounds, such as U-folds with U-duality transition functions.Comment: Latex, 47 page

    Generalised Geometry for M-Theory

    Get PDF
    Generalised geometry studies structures on a d-dimensional manifold with a metric and 2-form gauge field on which there is a natural action of the group SO(d,d). This is generalised to d-dimensional manifolds with a metric and 3-form gauge field on which there is a natural action of the group EdE_{d}. This provides a framework for the discussion of M-theory solutions with flux. A different generalisation is to d-dimensional manifolds with a metric, 2-form gauge field and a set of p-forms for pp either odd or even on which there is a natural action of the group Ed+1E_{d+1}. This is useful for type IIA or IIB string solutions with flux. Further generalisations give extended tangent bundles and extended spin bundles relevant for non-geometric backgrounds. Special structures that arise for supersymmetric backgrounds are discussed.Comment: 31 page

    A new maximally supersymmetric background of IIB superstring theory

    Get PDF
    We present a maximally supersymmetric IIB string background. The geometry is that of a conformally flat lorentzian symmetric space G/K with solvable G, with a homogeneous five-form flux. We give the explicit supergravity solution, compute the isometries, the 32 Killing spinors, and the symmetry superalgebra, and then discuss T-duality and the relation to M-theory.Comment: 17 page

    Wrapped Branes and Supersymmetry

    Get PDF
    Configurations of two or more branes wrapping different homology cycles of space-time are considered and the amount of supersymmetry preserved is analysed, generalising the analysis of multiple branes in flat space. For K3 compactifications, these give the Type II or M theory origin of certain supersymmetric four-dimensional heterotic string solutions that fit into spin-3/2 multiplets and which become massless at certain points in moduli space. The interpretation of these BPS states and the possibility of supersymmetry enhancement are discussed.Comment: 18 pages, Latex with Revtex, minor corrections and references added, version to appear in Nuclear Physics

    Global Aspects of T-Duality, Gauged Sigma Models and T-Folds

    Get PDF
    The gauged sigma-model argument that string backgrounds related by T-dual give equivalent quantum theories is revisited, taking careful account of global considerations. The topological obstructions to gauging sigma-models give rise to obstructions to T-duality, but these are milder than those for gauging: it is possible to T-dualise a large class of sigma-models that cannot be gauged. For backgrounds that are torus fibrations, it is expected that T-duality can be applied fibrewise in the general case in which there are no globally-defined Killing vector fields, so that there is no isometry symmetry that can be gauged; the derivation of T-duality is extended to this case. The T-duality transformations are presented in terms of globally-defined quantities. The generalisation to non-geometric string backgrounds is discussed, the conditions for the T-dual background to be geometric found and the topology of T-folds analysed.Comment: Minor corrections and addition
    • 

    corecore